为了正常的体验网站,请在浏览器设置里面开启Javascript功能!

论述四轮驱动的形式和特点

2017-09-19 6页 doc 140KB 34阅读

用户头像

is_321635

暂无简介

举报
论述四轮驱动的形式和特点论述四轮驱动的形式和特点(三级) 一、什么是四轮驱动? 说到四轮驱动,总能使人们想起那些身材魁梧、威猛超群的越野车。的确,四轮驱动的出现就是为了针对恶劣路况,征服那些两只车轮无法通过的险峻地形。最初,四轮驱动是纯种越野车的专门配备。但随着汽车工业的发展,以及人们对于汽车文化更加深入的认识,四驱车型通过性、爬坡性、转弯性能、启动和加速性能以及直线行驶性能都有较高的提升,虽说结构复杂、重量增加、成本升高、震动和噪音略有升高、油耗增加,但越来越多的车辆采用了四轮驱动系统。 四轮驱动,顾名思义是指汽车前后轮都有动力驱动,可以按照行驶路...
论述四轮驱动的形式和特点
论述四轮驱动的形式和特点(三级) 一、什么是四轮驱动? 说到四轮驱动,总能使人们想起那些身材魁梧、威猛超群的越野车。的确,四轮驱动的出现就是为了针对恶劣路况,征服那些两只车轮无法通过的险峻地形。最初,四轮驱动是纯种越野车的专门配备。但随着汽车工业的发展,以及人们对于汽车文化更加深入的认识,四驱车型通过性、爬坡性、转弯性能、启动和加速性能以及直线行驶性能都有较高的提升,虽说结构复杂、重量增加、成本升高、震动和噪音略有升高、油耗增加,但越来越多的车辆采用了四轮驱动系统。 四轮驱动,顾名思义是指汽车前后轮都有动力驱动,可以按照行驶路面状态的不同而将发动机输出扭矩按不同比例分布在前后所有的轮子上,遇到路况不好才不易出现车轮打滑,汽车的通过能力得到相当大地改善:对SUV、越野车来说,能提高越野路况的通过能力,而对轿车来说,则主要提高弯道的操控性能。四轮驱动一般用4×4或者4WD来示,注明这些符号的汽车就是有四轮驱动的功能。 二、为什么很多车辆需要四轮驱动呢? 根本原因就在于,通常情况下四轮驱动比起两轮驱动,具有更高的通过性能,也就是指车辆通过复杂地形的能力。当车辆行驶于复杂路况时,对于一辆普通的两驱车来说,一旦两个驱动轮中的任何一个车轮无论何种原因而失去行驶附着力的话,理论上讲,在不借助任何外力的情况下,车辆将无法继续前进。车辆进行直线行驶时,两侧车轮的行驶距离是完全相同的,并无转速差异。但在转弯时,如果继续保持这种行驶状态,将会对车辆造成严重的损伤,并且无法顺利通过弯道,原因是,车辆在弯道行驶时,外侧车轮行驶的距离要大于内侧车轮,由于通过的时间相等,所以两侧车轮之间存在转速差,所以不能采用刚性连接。差速器的出现巧妙地解决了这一问题,差速器的差速原理是:弯道行驶时,车辆两侧驱动轮所受到的转动阻力是不同的,差速器的实际功能就在于消除两侧车轮的阻力差,也就是说,只有两侧驱动轮出现阻力差,差速器才会工作,并且差速器的“差速程度”与“阻力差”是成正比的。如果一辆普通的两驱车在越野时,一个驱动轮紧贴地面,而另一侧的驱动轮悬空,此时由于两侧驱动轮的理论阻力差达到极限(一边是100%,一边是0),所以差速器就会将发动机传送的几乎全部动力都传递给失去路面附着力的驱动轮,以消除阻力差,而另一侧路面附着良好的驱动轮几乎不会被传递任何动力。在这种情况下,由于车辆的驱动力都会从失去附着力的驱动轮流失,所以造成车辆无法前进。 图:转弯时内外侧车轮的转速差促使了差速器的发明。 为了解决这一问题,工程师们发明了很多种能够限制差速器差速功能,从而防止驱动轮打滑的装置(以下简称“限滑装置”)。最根本的解决就是:差速锁。差速锁的作用就是将差速器实现差速功能的组件完全锁住,从而彻底消除了差速器的差速功能,换句话说,就是将差速器与两侧的半轴通过牙嵌式离合器(或其他能够阻止差速器当中部件转动的装置)刚性连接起来,使之成为一个整体。这样就保证了车辆无论遇到何种行驶状态,两侧驱动轮的转速都是相同的,此时的动力传递并不针对于两侧驱动轮,而是针对于整个驱动轴,差速锁将正常情况下平均分配于两侧驱动轮的动力都作用于这个拥有强大附着力的驱动轮,从而大大增强了车辆的通过能力。 当两侧驱动轮之间存在很大的阻力差时,就会造成车轮打滑。对此,工程师们想到:如果给受到阻力较小的车轮也施加阻力的话,是不是同样可以达到“限滑”目的呢?答案是肯定的。针对这一思路,牵引力控制系统随之应运而生。它的工作原理就是:这套系统能够时刻监测各个驱动轮的转速,当系统监测到驱动轮之间出现较大转速差时,会自动对超过安全转速(也就是打滑)的车轮施加制动力(制动系统就是阻力的来源),从而减小了阻力差,给予了附着力较强车轮更大的动力驱动车辆前进。这套系统的优点在于自动化程度高,驾驶员无需进行任何操纵,这一过程完全由电脑控制。比较于机械式差速锁,牵引力控制系统的灵活性更强,它能够针对各种路况进行自动控制,适应面要比机械式差速锁更宽泛,而且对于公路行驶的安全性也能提供一定帮助。由于牵引力控制系统只能在驱动轮出现较大转速差的一瞬间工作,而且会在较大程度上消耗输出动能,另外就是此系统的反应速度较慢,并且存在滞后,等等原因所以导致车辆的行驶连贯性较差,当遇到长距离恶劣路况行驶时(例如攀登一个很长的泥泞陡坡),牵引力控制系统会持续不断地工作,除了造成车辆持续行驶动力不足以外,严重的情况甚至会导致制动系统失效或烧毁。所以在SUV上,牵引力控制系统一般并不单独存在,而是作为配合其他限滑装置的辅助手段,协同工作。 四轮驱动的车型,变速器后面装有手动分力器,前后车轴各装一个称为驱动桥的部件。变速器输出的扭矩通过分动器和传动轴,分别传递到前后车轴上的驱动桥,再通过驱动桥上的差速器将扭矩传递到轮子上。轿车的马力都比较大,加速时重心后移,全车重量就会向后轴移动,造成前轴轻飘。前轮驱动的轿车即使在良好的路面上也会打滑,4轮驱动也可以防止这种现象发生。 三、四轮驱动的几种驱动模式及特点 轿车的四轮驱动装置已经引进了电子计算机控制系统,当前轮或后轮驱动时,车子随时根据路面状态的反馈信息分配前后轮子的动力,变为四轮驱动。四轮驱动又可以细分成3种驱动模式:全时驱动、兼时驱动和适时驱动。 图:四轮驱动的工作原理 全时四驱又称全时全轮驱动(FULL-TIME 4WD)——具体的含义是:汽车在行驶的任何时间,发动机输出扭矩按50:50设定在前后轮上,所有轮子均独立运动,永远维持四轮驱动模式,随时有良好的驾驶操控性和行驶循迹性,最明显的就是它会比两驱车型转向更加中性,通常它可以更好的避免前驱车的转向不足和后驱车的转向过度,这也是驾驶安全性以及稳定性的特点之一。但全时四驱不经济,比较费油。 全时四驱拥有前、中、后三个差速器。对于一辆全时四驱车型来说,必须配备限滑辅助装置,否则它的通过性能还不如两轮驱动,因为那样的话,理论上讲,四只车轮中无论哪个首先失去行驶附着力,动力将会以此全部流失,导致车辆失去牵引力(而普通两驱车如果非驱动轮失去附着力的话,并不会影响车辆的牵引力)。其实全时四驱车辆的限滑手段有5种,分别是机械式差速锁、牵引力控制系统、粘性耦合器、扭矩感应自锁式差速器和液压多摩擦片装置。 对于全时四驱车辆来讲,最重要的就是中央限滑装置,其次才是前后桥的辅助装置。因为全时四驱车型的动力传递方式为:发动机→变速箱→中央差速器→前、后桥差速器→驱动轮。所以如果没有中央限滑装置的话,无论前后桥具备多么强大的辅助装置,由于中央差速器对于前后驱动桥的动力输出会与其所受阻力成反比,形象地讲就是相对较多的动力会从附着力相对较小的驱动桥被输出,也会造成车辆牵引力不足。当然,配备四轮独立牵引力控制系统的车辆则不存在此问题,因为四轮独立的牵引力控制系统作用于每只驱动轮,无论任何驱动轮失去牵引力,牵引力控制系统都会将动力传递至附着力较强驱动轮上。全时四驱车型的中央差速器完全锁定后,与牙嵌接通式的四驱系统接通状态是相同的,都保证了前后桥间的刚性连接。 此外,还有一些重视越野性能的SUV配有“越野低速挡”,这是一套位于变速箱输出端独立存在的减速机构,能够将变速箱输出的扭矩成倍放大,当然,输出转速也会随之以相同速比降低。越野低速挡的实际用途就是帮助车辆在攀登陡坡时获得更强的最终输出扭矩,或在下坡时提供更强的发动机制动功效。 兼时四驱(又称分时四驱,PART-TIME 4WD)——是一种驾驶者可以在两驱和四驱之间手动选择的四轮驱动系统,由驾驶员根据路面情况,通过接通或断开分动器来变化两轮驱动或四轮驱动模式,这也是越野车或四驱SUV最常见的驱动模式。这种驱动方式无须担心正常行驶中前后桥间的转速差问题,因为前后桥间是互不干扰彼此保持独立的转动方式,所以在附着力良好的路面上可以保持平顺地行驶。当遇到附着力较差的路况,此时可以接通另外两个驱动轮,共同驱动车辆前进。由于接通后,前后桥间实现了刚性连接,所以理论上讲前后桥的动力分配也与其所受阻力成正比。当驶回良好附着力的路况时,必须断开前后桥间的刚性连接,否则会妨碍车辆转弯行驶。 兼时四驱的接通方式也分为很多种,并且具备各自的特点,以下将分别介绍: 手动牙嵌式接通方式:这种接通方式与机械式差速锁的工作方式相似——都是通过坚固的牙嵌式结合装置实现100%锁止。这套系统的特点也与手动机械式差速锁十分类似:结构相对简单,可靠性最强,辅助效果最明显,极限通过能力强,缺乏变化的锁止系数,没有自动化程度,对驾驶技术要求较高……正是这些特点使其适应面单一,通常仅配备于那些纯种越野车上。从早期的willis,到今天的牧马人,这种手动牙嵌接通驱动方式服役了半个世纪以上,而其地位却至今仍无可撼动,根本原因就是这种接合方式保证了强大的可靠性与限滑性能,至今仍然受到广大越野者们的青睐。 黏性耦合接通方式:粘性耦合器内部充满了硅油,传动轴与外壳分别连接于差速器两端的两个半轴上,当车辆直线行驶或进行正常的弯道行驶时,由于摩擦片之间只发生较小的相对转动,黏性耦合器并不会限制差速器的工作。但当两侧驱动轮的转速差超过某一临界值(这取决于硅油的黏性)时,由于内部的硅油会被高速搅动,膨胀并产生黏性,使得黏性耦合器形成类似锁住的现象。这样两侧驱动轮的阻力达到新的平衡。附着力较大的一侧驱动轮获得动力,得以继续驱动车辆前进。当两侧驱动轮之间的转速差减小至临界值以下时,硅油温度降低,黏性耦合器不再产生“黏性”,差速器恢复工作,车辆正常行驶。这套系统具备了黏性耦合装置的特点,虽然具备一定自动化程度,但由于反应速度滞后,且缺乏连贯性,所以通常装配于一些不强调越野性能的城市SUV上,但由于技术落后,所以这种接通方式正逐渐被液压多摩擦片接通系统取代。 上图:粘性耦合器结构示意图 最后要介绍的一类限滑装置就是当今最流行的技术:液压多摩擦片式装置,主要组成部分就是液压系统和摩擦片。摩擦片分为两组,分别安装在差速器壳与一侧半轴上。当液压系统对摩擦片作用时,两组相邻的摩擦片就会紧紧挤压在一起,从而将差速器锁死,实现限滑目的。这套装置也有两种工作方式:一种是手动开启,像机械式差速锁一样,当遇到崎岖地形时,通过按钮开启液压多摩擦片装置,锁定差速器,提高车辆通过性能。另一种采用自动接通式,这与牵引力控制系统有些类似,当车辆监测到某驱动桥上两侧驱动轮之间的转速差超过某一临界值时,会自动启动液压系统,将多摩擦片装置锁死,从而实现限滑。 适时四驱(Real-Time 4WD)——单纯从字面来理解,就是指只有在适当的时候才采用的四轮驱动,而在其它情况下仍然是两轮驱动的驱动系统。这个名称是有别于需要手动切换两驱和四驱的分时四驱,以及所有工况下都是四轮驱动的全时四驱而来的。大多数都在车内了单独的按钮,印有“LOCK”字样,而也有些为自动感应式的联通四驱状态,车内无按钮。采用适时驱动(Real-Time)的车辆,其选择何种驱动模式由电脑控制,正常路面一般采用(前)后轮驱动,如果路面不良或驱动轮打滑,电脑会自动测出并立即将发动机输出扭矩分配给其它两轮,切换到4轮驱动状态,操纵简单。 相比全时四驱,适时四驱的结构要简单得多,这不仅可以有效也降低成本,而且也有利于降低整车重量。由于适时四驱的特殊结构,它更适合于前横置发动机前驱平台的车型配备,这使得许多基于这种平台打造的SUV或者四驱轿车有了装配四驱系统的可能。前驱平台相对于后驱平台本身就有着诸多优势,如更有利于拓展车内空间、传动效率更高、传动系统的噪音更小等等。这些优点对于小型SUV,特别是是发动机排量较小的SUV来说显得尤其重要。当然,适时四驱的缺点仍然是存在的,目前绝大多数适时四驱在前后轴传递动力时,会受制于结构本身的缺陷,无法将超过50%以上的动力传递给后轴,这使它在主动安全控制方面,没有全时四驱的调整范围那么大;同时相比分时四驱,它在应对恶劣路面时,四驱的物理结构极限偏低。
/
本文档为【论述四轮驱动的形式和特点】,请使用软件OFFICE或WPS软件打开。作品中的文字与图均可以修改和编辑, 图片更改请在作品中右键图片并更换,文字修改请直接点击文字进行修改,也可以新增和删除文档中的内容。
[版权声明] 本站所有资料为用户分享产生,若发现您的权利被侵害,请联系客服邮件isharekefu@iask.cn,我们尽快处理。 本作品所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用。 网站提供的党政主题相关内容(国旗、国徽、党徽..)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。

历史搜索

    清空历史搜索